87 research outputs found

    Treatment with LY2409021, a Glucagon Receptor Antagonist, Increases Liver Fat in Patients with Type 2 Diabetes

    Get PDF
    Aims To evaluate whether treatment with LY2409021, a novel, selective glucagon receptor antagonist, is associated with changes in hepatic fat and other safety variables related to the benefit–risk profile for chronic use in patients with type 2 diabetes (T2D). Methods Safety and efficacy were assessed in patients with T2D taking metformin and sulphonylurea who were randomized to LY2409021 20 mg (n = 65), placebo (n = 68), or sitagliptin 100 mg (n = 41). Key endpoints included change from baseline to month 6 in hepatic fat fraction (HFF), assessed by magnetic resonance imaging; hepatic aminotransferases; blood pressure; lipid profile; fasting plasma glucose; and glycated haemoglobin (HbA1c). Results A significant increase in HFF was seen with LY2409021 vs sitagliptin (least squares [LS] mean difference 3.72%; P < .001) and placebo (4.44%; P < .001), accompanied by significant elevations in alanine aminotransferase levels with LY2409021 vs sitagliptin (6.8 U/L; P = .039) and vs placebo (10.7 U/L; P < .001). No patients had concomitant elevations in bilirubin levels. LY2409021 treatment showed significant HbA1c reductions vs placebo (LS mean difference −0.77%; P < .001) but not sitagliptin (−0.20%; P = .383). Similar results were observed for fasting plasma glucose. LY2409021 was also associated with significant increases in systolic blood pressure vs sitagliptin (4.9 mm Hg; P = .030) and vs placebo (4.3 mm Hg; P = .029), as well as significant increases in body weight and total cholesterol. All effects of LY2409021 were reversible. Conclusion In this cohort of patients with T2D, chronic glucagon receptor antagonism with LY2409021 was associated with glucose-lowering but also demonstrated increases in hepatic fat, hepatic aminotransferases, and other adverse effects

    Quantitative CT: Associations between Emphysema, Airway Wall Thickness and Body Composition in COPD

    Get PDF
    The objective of the present study was to determine the association between CT phenotypes—emphysema by low attenuation area and bronchitis by airway wall thickness—and body composition parameters in a large cohort of subjects with and without COPD. In 452 COPD subjects and 459 subjects without COPD, CT scans were performed to determine emphysema (%LAA), airway wall thickness (AWT-Pi10), and lung mass. Muscle wasting based on FFMI was assessed by bioelectrical impedance. In both the men and women with COPD, FFMI was negatively associated with %LAA. FMI was positively associated with AWT-Pi10 in both subjects with and without COPD. Among the subjects with muscle wasting, the percentage emphysema was high, but the predictive value was moderate. In conclusion, the present study strengthens the hypothesis that the subgroup of COPD cases with muscle wasting have emphysema. Airway wall thickness is positively associated with fat mass index in both subjects with and without COPD

    The association of plasma biomarkers with computed tomography-assessed emphysema phenotypes

    Get PDF
    Rationale: Chronic obstructive pulmonary disease (COPD) is a phenotypically heterogeneous disease. In COPD, the presence of emphysema is associated with increased mortality and risk of lung cancer. High resolution computed tomography (HRCT) scans are useful in quantifying emphysema but are associated with radiation exposure and high incidence of false positive findings (i.e., nodules). Using a comprehensive biomarker panel, we sought to determine if there was a peripheral blood biomarker signature of emphysema. Methods: 114 plasma biomarkers were measured using a custom assay in 588 individuals enrolled in the COPDGene study. Quantitative emphysema measurements included percent low lung attenuation (%LAA) ≤ −950 HU, ≤ − 910 HU and mean lung attenuation at the 15th percentile on lung attenuation curve (LP15A). Multiple regression analysis was performed to determine plasma biomarkers associated with emphysema independent of covariates age, gender, smoking status, body mass index and FEV1. The findings were subsequently validated using baseline blood samples from a separate cohort of 388 subjects enrolled in the Treatment of Emphysema with a Selective Retinoid Agonist (TESRA) study. Results: Regression analysis identified multiple biomarkers associated with CT-assessed emphysema in COPDGene, including advanced glycosylation end-products receptor (AGER or RAGE, p < 0.001), intercellular adhesion molecule 1 (ICAM, p < 0.001), and chemokine ligand 20 (CCL20, p < 0.001). Validation in the TESRA cohort revealed significant associations with RAGE, ICAM1, and CCL20 with radiologic emphysema (p < 0.001 after meta-analysis). Other biomarkers that were associated with emphysema include CDH1, CDH 13 and SERPINA7, but were not available for validation in the TESRA study. Receiver operating characteristics analysis demonstrated a benefit of adding a biomarker panel to clinical covariates for detecting emphysema, especially in those without severe airflow limitation (AUC 0.85). Conclusions: Our findings, suggest that a panel of blood biomarkers including sRAGE, ICAM1 and CCL20 may serve as a useful surrogate measure of emphysema, and when combined with clinical covariates, may be useful clinically in predicting the presence of emphysema compared to just using covariates alone, especially in those with less severe COPD. Ultimately biomarkers may shed light on disease pathogenesis, providing targets for new treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0127-9) contains supplementary material, which is available to authorized users

    The association of plasma biomarkers with computed tomography-assessed emphysema phenotypes

    Full text link
    Abstract Rationale Chronic obstructive pulmonary disease (COPD) is a phenotypically heterogeneous disease. In COPD, the presence of emphysema is associated with increased mortality and risk of lung cancer. High resolution computed tomography (HRCT) scans are useful in quantifying emphysema but are associated with radiation exposure and high incidence of false positive findings (i.e., nodules). Using a comprehensive biomarker panel, we sought to determine if there was a peripheral blood biomarker signature of emphysema. Methods 114 plasma biomarkers were measured using a custom assay in 588 individuals enrolled in the COPDGene study. Quantitative emphysema measurements included percent low lung attenuation (%LAA)≤ - 950 HU, ≤ -910 HU and mean lung attenuation at the 15th percentile on lung attenuation curve (LP15A). Multiple regression analysis was performed to determine plasma biomarkers associated with emphysema independent of covariates age, gender, smoking status, body mass index and FEV1. The findings were subsequently validated using baseline blood samples from a separate cohort of 388 subjects enrolled in the Treatment of Emphysema with a Selective Retinoid Agonist (TESRA) study. Results Regression analysis identified multiple biomarkers associated with CT-assessed emphysema in COPDGene, including advanced glycosylation end-products receptor (AGER or RAGE, p < 0.001), intercellular adhesion molecule 1 (ICAM, p < 0.001), and chemokine ligand 20 (CCL20, p < 0.001). Validation in the TESRA cohort revealed significant associations with RAGE, ICAM1, and CCL20 with radiologic emphysema (p < 0.001 after meta-analysis). Other biomarkers that were associated with emphysema include CDH1, CDH 13 and SERPINA7, but were not available for validation in the TESRA study. Receiver operating characteristics analysis demonstrated a benefit of adding a biomarker panel to clinical covariates for detecting emphysema, especially in those without severe airflow limitation (AUC 0.85). Conclusions Our findings, suggest that a panel of blood biomarkers including sRAGE, ICAM1 and CCL20 may serve as a useful surrogate measure of emphysema, and when combined with clinical covariates, may be useful clinically in predicting the presence of emphysema compared to just using covariates alone, especially in those with less severe COPD. Ultimately biomarkers may shed light on disease pathogenesis, providing targets for new treatments.http://deepblue.lib.umich.edu/bitstream/2027.42/134591/1/12931_2014_Article_127.pd

    A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci

    Get PDF
    There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer

    A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naive patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial

    Get PDF
    Objectives To compare efficacy and safety of ixekizumab (IXE) to adalimumab (ADA) in biological disease-modifying antirheumatic drug-naive patients with both active psoriatic arthritis (PsA) and skin disease and inadequate response to conventional synthetic disease-modifying antirheumatic drug (csDMARDs).Methods Patients with active PsA were randomised (1:1) to approved dosing of IXE or ADA in an open-label, head-to-head, blinded assessor clinical trial. The primary objective was to evaluate whether IXE was superior to ADA at week 24 for simultaneous achievement of a >= 50% improvement from baseline in the American College of Rheumatology criteria (ACR50) and a 100% improvement from baseline in the Psoriasis Area and Severity Index (PASI100). Major secondary objectives, also at week 24, were to evaluate whether IXE was: (1) non-inferior to ADA for achievement of ACR50 and (2) superior to ADA for PASI100 response. Additional PsA, skin, treat-to-target and quality-of-life outcome measures were assessed at week 24.Results The primary efficacy endpoint was met (IXE: 36%, ADA: 28%; p=0.036). IXE was non-inferior for ACR50 response (IXE: 51%, ADA: 47%; treatment difference: 3.9%) and superior for PASI100 response (IXE: 60%, ADA: 47%; p=0.001). IXE had greater response versus ADA in additional PsA, skin, nail, treat-to-target and quality-of-life outcomes. Serious adverse events were reported in 8.5% (ADA) and 3.5% (IXE) of patients.Conclusions IXE was superior to ADA in achievement of simultaneous improvement of joint and skin disease (ACR50 and PASI100) in patients with PsA and inadequate response to csDMARDs. Safety and tolerability for both biologicals were aligned with established safety profiles.</div

    Systemic Biomarkers of Neutrophilic Inflammation, Tissue Injury and Repair in COPD Patients with Differing Levels of Disease Severity

    Get PDF
    The identification and validation of biomarkers to support the assessment of novel therapeutics for COPD continues to be an important area of research. The aim of the current study was to identify systemic protein biomarkers correlated with measures of COPD severity, as well as specific protein signatures associated with comorbidities such as metabolic syndrome. 142 protein analytes were measured in serum of 140 patients with stable COPD, 15 smokers without COPD and 30 non-smoking controls. Seven analytes (sRAGE, EN-RAGE, NGAL, Fibrinogen, MPO, TGF-α and HB-EGF) showed significant differences between severe/very severe COPD, mild/moderate COPD, smoking and non-smoking control groups. Within the COPD subjects, univariate and multivariate analyses identified analytes significantly associated with FEV1, FEV1/FVC and DLCO. Most notably, a set of 5 analytes (HB-EGF, Fibrinogen, MCP-4, sRAGE and Sortilin) predicted 21% of the variability in DLCO values. To determine common functions/pathways, analytes were clustered in a correlation network by similarity of expression profile. While analytes related to neutrophil function (EN-RAGE, NGAL, MPO) grouped together to form a cluster associated with FEV1 related parameters, analytes related to the EGFR pathway (HB-EGF, TGF-α) formed another cluster associated with both DLCO and FEV1 related parameters. Associations of Fibrinogen with DLCO and MPO with FEV1/FVC were stronger in patients without metabolic syndrome (r  =  −0.52, p  = 0.005 and r  =  −0.61, p  = 0.023, respectively) compared to patients with coexisting metabolic syndrome (r  =  −0.25, p  = 0.47 and r  =  −0.15, p  = 0.96, respectively), and may be driving overall associations in the general cohort. In summary, our study has identified known and novel serum protein biomarkers and has demonstrated specific associations with COPD disease severity, FEV1, FEV1/FVC and DLCO. These data highlight systemic inflammatory pathways, neutrophil activation and epithelial tissue injury/repair processes as key pathways associated with COPD
    corecore